Trending...
- AI Visibility: The Key to Beating Google's AI Overviews and Regaining Traffic
- New Mobile Car Detailing Platform Connects Drivers with On-Demand Local Pros
- Cal State LA secures funding for two artificial intelligence projects from CSU
LOS ANGELES - Californer -- A team of researchers from the University of California, Los Angeles, Texas A&M University, and Florida International University have unveiled a groundbreaking innovation in diabetes management with the development of a novel continuous glucose monitoring (CGM) system. The new system integrates an insertable glucose biosensor with a phosphorescence lifetime imager (PLI) and advanced machine learning algorithms to offer a more reliable and cost-effective solution for real-time glucose monitoring.
Diabetes, a chronic condition affecting over 450 million individuals globally, necessitates continuous and precise glucose monitoring to avoid severe health complications. Traditional glucose monitoring methods often require frequent finger pricking, leading to discomfort and reduced adherence to glucose management regimens. While existing CGM systems have alleviated some of these challenges, they are still associated with high costs, limited sensor lifetimes, and potential tissue irritation due to the invasive nature of electrode insertion.
More on The Californer
The new CGM system addresses these limitations by utilizing a biocompatible phosphorescence-based biosensor that is implanted subcutaneously. Unlike conventional CGMs that rely on electrochemical reactions, this innovative system detects glucose levels through the modulation of phosphorescence signals emitted by the sensor. The emitted signal, which has a significantly longer lifetime compared to tissue autofluorescence, is captured by the compact PLI through the skin, allowing for a non-invasive readout of glucose levels.
One of the most significant advancements of this system is its ability to accurately monitor glucose levels even in the presence of sensor misalignment, a common issue in wearable devices. The PLI is equipped with a neural network-based model that processes phosphorescence lifetime images to not only infer glucose levels but also detect misalignments, prompting the user to correct the device's position if necessary. This feature ensures that the glucose readings remain accurate and reliable, even during physical activity or movement, which can often cause misalignments.
More on The Californer
In vitro testing demonstrated that the PLI achieved an accuracy of 88.8% in classifying glucose concentrations across normal, low, and high ranges, with an additional capability of identifying misalignments with 100% accuracy. This robust performance suggests that the system can significantly improve the quality of glucose monitoring, potentially reducing the need for frequent recalibration and offering a more seamless experience for users.
The insertable biosensor is smaller and more durable than current alternatives, with a stable phosphorescence response lasting up to 12 weeks and enzyme activity maintained for over four weeks. This extended lifespan reduces the need for frequent sensor replacements, which is a major contributor to the high cost of existing CGM systems. This new CGM is cost effective and PLI's compact and portable design, coupled with its affordability, makes it an attractive option for widespread adoption.
Researchers envision broader applications for the PLI system for multiplexed sensing, where multiple biomarkers can be monitored simultaneously.
Original paper: https://pubs.acs.org/doi/10.1021/acsnano.4c06527
Diabetes, a chronic condition affecting over 450 million individuals globally, necessitates continuous and precise glucose monitoring to avoid severe health complications. Traditional glucose monitoring methods often require frequent finger pricking, leading to discomfort and reduced adherence to glucose management regimens. While existing CGM systems have alleviated some of these challenges, they are still associated with high costs, limited sensor lifetimes, and potential tissue irritation due to the invasive nature of electrode insertion.
More on The Californer
- Rachel Farris, CPA Featured on The AJ Brown Show to Discuss Act 60 Tax Incentives
- Brindle Pet Supplies Now Carries Badlands Ranch Dog Food in Canada
- Jade & Zelda Launch Virtually Human: A Groundbreaking Podcast Hosted by AI-Powered Virtual Humans
- Dr. Satyam Priyadarshy Joins Indemnify AI to Enrich AI Risk Financial Quantification
- $10 Million Allocated to Establish Crypto Treasury Focused on High Value Ethereum (ETH) & Bitcoin (BTC) as Long-Term Holdings for Cybersecurity Leader
The new CGM system addresses these limitations by utilizing a biocompatible phosphorescence-based biosensor that is implanted subcutaneously. Unlike conventional CGMs that rely on electrochemical reactions, this innovative system detects glucose levels through the modulation of phosphorescence signals emitted by the sensor. The emitted signal, which has a significantly longer lifetime compared to tissue autofluorescence, is captured by the compact PLI through the skin, allowing for a non-invasive readout of glucose levels.
One of the most significant advancements of this system is its ability to accurately monitor glucose levels even in the presence of sensor misalignment, a common issue in wearable devices. The PLI is equipped with a neural network-based model that processes phosphorescence lifetime images to not only infer glucose levels but also detect misalignments, prompting the user to correct the device's position if necessary. This feature ensures that the glucose readings remain accurate and reliable, even during physical activity or movement, which can often cause misalignments.
More on The Californer
- Fact: Trump lied — again. California gas prices remain lower than a week ago, month ago, and a year ago
- Sing For Your Supper: A Night of Musical Comedy and Drag for a Great Cause
- Top "We Buy Houses" Companies in Oakland, CA Announced — JiT Home Buyers Leads the Pack in 2025
- Ansira Appoints Amalia Thomas As Chief Revenue Officer
- Cummings Graduate Institute for Behavioral Health Studies Celebrates New DBH Graduates
In vitro testing demonstrated that the PLI achieved an accuracy of 88.8% in classifying glucose concentrations across normal, low, and high ranges, with an additional capability of identifying misalignments with 100% accuracy. This robust performance suggests that the system can significantly improve the quality of glucose monitoring, potentially reducing the need for frequent recalibration and offering a more seamless experience for users.
The insertable biosensor is smaller and more durable than current alternatives, with a stable phosphorescence response lasting up to 12 weeks and enzyme activity maintained for over four weeks. This extended lifespan reduces the need for frequent sensor replacements, which is a major contributor to the high cost of existing CGM systems. This new CGM is cost effective and PLI's compact and portable design, coupled with its affordability, makes it an attractive option for widespread adoption.
Researchers envision broader applications for the PLI system for multiplexed sensing, where multiple biomarkers can be monitored simultaneously.
Original paper: https://pubs.acs.org/doi/10.1021/acsnano.4c06527
Source: ucla ita
Filed Under: Health
0 Comments
Latest on The Californer
- VoiceGenie AI empowers small businesses with 24/7, brand-driven customer engagement through an AI-powered virtual front desk receptionist
- California: Governor Newsom signs tribal-state gaming compact 7.14.25
- VoiceGenie AI empowers small businesses with human-like call answering and customer engagement—bridging the gap between automation and live
- New 24/7 AI solution transforms customer engagement and efficiency for small businesses seeking live virtual receptionist services
- Next-generation virtual receptionist service leverages AI to ensure every customer call and text is answered, enhancing efficiency and engagem
- Next-Gen AI Receptionist Elevates Customer Communication, Boosts Efficiency for Small Businesses
- California: Governor Newsom signs legislation 7.14.25
- New AI-Powered Platform from Kell Web Solutions Delivers 24/7 Professional, Automated Call Handling and Appointment Scheduling
- Kell Web Solutions Launches Next-Gen VoiceGenie AI Call Answering Service for Businesses
- 24/7 Conversational AI Platform Raises the Standard for Small Business Customer Engagement
- Pyro Marketing Launches New Website to Accelerate Growth for Fitness Brands
- QuickLogic Announces the Passing of Board Director Christine Russell
- KCON LA 2025, 106.3 RAIN FM 'Take Over' Special Event
- IEI USA Launches SHIELD Rugged Stainless Steel Panel PCs for Hygiene-Critical Industries
- In historic first, California powered by two-thirds clean energy – becoming largest economy in the world to achieve milestone
- North Island Credit Union Foundation Provides $5,000 in Teacher Grants To Benefit Educators & Students
- The Citizens Commission on Human Rights Annual Purple Heart Day Event will be Hosted at the Historic Fort Harrison
- Blake Harris the Leading Authority in International Asset Protection Joins Tom Hegna on "Financial Freedom with Tom Hegna"
- Wise Business Plans Emerges as a Go-To Partner for Angel Investors, VCs, Family Offices and Private
- Psychedelics for Vets? CCHR Cites History of Exploitation and Failed Science