Trending...
- AI Visibility: The Key to Beating Google's AI Overviews and Regaining Traffic
- New Mobile Car Detailing Platform Connects Drivers with On-Demand Local Pros
- Cal State LA secures funding for two artificial intelligence projects from CSU
LOS ANGELES - Californer -- Light can compute functions during its propagation and interaction with structured materials, with high speed and low energy consumption. Achieving universal computing using all-optical neural networks requires optical activation layers with nonlinear dependence on input. However, the existing optical nonlinear materials are either slow or have very weak nonlinearity under the natural light intensity levels captured by a camera. Therefore, the design and development of new optical activation functions is essential for realizing optical neural networks that compute with ambient light.
In a recent paper published in Nature Communications, a research team led by Professor Xiangfeng Duan and Professor Aydogan Ozcan from the University of California, Los Angeles (UCLA), USA, reported a new strategy using an optoelectronic neuron array to achieve strong optical nonlinearity at low optical intensity for broadband incoherent light. Their device heterogeneously integrates two-dimensional (2D) transparent phototransistors (TPTs) with liquid crystal (LC) modulators. Under low light illumination, the TPT is highly resistive, and most of the voltage drop occurs on the TPT. The LC is unperturbed and remains transmissive. At high input optical power, however, the TPT becomes conductive, so most of the voltage drops across the LC layer, shutting off the optical transmission.
More on The Californer
In their experimental demonstration, the designed optoelectronic neurons allowed spatially and temporally incoherent light in the visible wavelengths to nonlinearly modulate its own amplitude with only ~20% photon loss. They fabricated a 100×100 (10,000) optoelectronic neuron array and demonstrated a strong nonlinear behavior under laser and white light illumination. The nonlinear optoelectronic array was further integrated as part of a cellphone-based imaging system for intelligent glare reduction, selectively blocking intense glares while presenting little attenuation for the weaker-intensity objects within the imaging field of view. The device modeling suggests a very low optical intensity threshold of 56 μW/cm2 to generate a significant nonlinear response, and a low energy consumption of 69 fJ per photonic activation for the optimized devices.
Such an optoelectronic neuron array enables nonlinear self-amplitude modulation of spatially incoherent light, featuring a low optical intensity threshold, strong nonlinear contrast, broad spectral response, fast speed and low photon loss. The performance is highly desirable for image processing and visual computing systems that do not rely on intense laser beams. Besides intelligent glare reduction, the cascaded integration of optoelectronic neuron arrays with linear diffractive optical processors could be used to construct nonlinear optical networks, potentially finding widespread applications in computational imaging and sensing, also opening the door for new nonlinear optical processor designs using ambient light.
More on The Californer
Article: https://www.nature.com/articles/s41467-024-46387-5
In a recent paper published in Nature Communications, a research team led by Professor Xiangfeng Duan and Professor Aydogan Ozcan from the University of California, Los Angeles (UCLA), USA, reported a new strategy using an optoelectronic neuron array to achieve strong optical nonlinearity at low optical intensity for broadband incoherent light. Their device heterogeneously integrates two-dimensional (2D) transparent phototransistors (TPTs) with liquid crystal (LC) modulators. Under low light illumination, the TPT is highly resistive, and most of the voltage drop occurs on the TPT. The LC is unperturbed and remains transmissive. At high input optical power, however, the TPT becomes conductive, so most of the voltage drops across the LC layer, shutting off the optical transmission.
More on The Californer
- Rachel Farris, CPA Featured on The AJ Brown Show to Discuss Act 60 Tax Incentives
- Brindle Pet Supplies Now Carries Badlands Ranch Dog Food in Canada
- Jade & Zelda Launch Virtually Human: A Groundbreaking Podcast Hosted by AI-Powered Virtual Humans
- Dr. Satyam Priyadarshy Joins Indemnify AI to Enrich AI Risk Financial Quantification
- $10 Million Allocated to Establish Crypto Treasury Focused on High Value Ethereum (ETH) & Bitcoin (BTC) as Long-Term Holdings for Cybersecurity Leader
In their experimental demonstration, the designed optoelectronic neurons allowed spatially and temporally incoherent light in the visible wavelengths to nonlinearly modulate its own amplitude with only ~20% photon loss. They fabricated a 100×100 (10,000) optoelectronic neuron array and demonstrated a strong nonlinear behavior under laser and white light illumination. The nonlinear optoelectronic array was further integrated as part of a cellphone-based imaging system for intelligent glare reduction, selectively blocking intense glares while presenting little attenuation for the weaker-intensity objects within the imaging field of view. The device modeling suggests a very low optical intensity threshold of 56 μW/cm2 to generate a significant nonlinear response, and a low energy consumption of 69 fJ per photonic activation for the optimized devices.
Such an optoelectronic neuron array enables nonlinear self-amplitude modulation of spatially incoherent light, featuring a low optical intensity threshold, strong nonlinear contrast, broad spectral response, fast speed and low photon loss. The performance is highly desirable for image processing and visual computing systems that do not rely on intense laser beams. Besides intelligent glare reduction, the cascaded integration of optoelectronic neuron arrays with linear diffractive optical processors could be used to construct nonlinear optical networks, potentially finding widespread applications in computational imaging and sensing, also opening the door for new nonlinear optical processor designs using ambient light.
More on The Californer
- Fact: Trump lied — again. California gas prices remain lower than a week ago, month ago, and a year ago
- Sing For Your Supper: A Night of Musical Comedy and Drag for a Great Cause
- Top "We Buy Houses" Companies in Oakland, CA Announced — JiT Home Buyers Leads the Pack in 2025
- Ansira Appoints Amalia Thomas As Chief Revenue Officer
- Cummings Graduate Institute for Behavioral Health Studies Celebrates New DBH Graduates
Article: https://www.nature.com/articles/s41467-024-46387-5
Source: UCLA ITA
Filed Under: Science
0 Comments
Latest on The Californer
- VoiceGenie AI empowers small businesses with 24/7, brand-driven customer engagement through an AI-powered virtual front desk receptionist
- California: Governor Newsom signs tribal-state gaming compact 7.14.25
- VoiceGenie AI empowers small businesses with human-like call answering and customer engagement—bridging the gap between automation and live
- New 24/7 AI solution transforms customer engagement and efficiency for small businesses seeking live virtual receptionist services
- Next-generation virtual receptionist service leverages AI to ensure every customer call and text is answered, enhancing efficiency and engagem
- Next-Gen AI Receptionist Elevates Customer Communication, Boosts Efficiency for Small Businesses
- California: Governor Newsom signs legislation 7.14.25
- New AI-Powered Platform from Kell Web Solutions Delivers 24/7 Professional, Automated Call Handling and Appointment Scheduling
- Kell Web Solutions Launches Next-Gen VoiceGenie AI Call Answering Service for Businesses
- 24/7 Conversational AI Platform Raises the Standard for Small Business Customer Engagement
- Pyro Marketing Launches New Website to Accelerate Growth for Fitness Brands
- QuickLogic Announces the Passing of Board Director Christine Russell
- KCON LA 2025, 106.3 RAIN FM 'Take Over' Special Event
- IEI USA Launches SHIELD Rugged Stainless Steel Panel PCs for Hygiene-Critical Industries
- In historic first, California powered by two-thirds clean energy – becoming largest economy in the world to achieve milestone
- North Island Credit Union Foundation Provides $5,000 in Teacher Grants To Benefit Educators & Students
- The Citizens Commission on Human Rights Annual Purple Heart Day Event will be Hosted at the Historic Fort Harrison
- Blake Harris the Leading Authority in International Asset Protection Joins Tom Hegna on "Financial Freedom with Tom Hegna"
- Wise Business Plans Emerges as a Go-To Partner for Angel Investors, VCs, Family Offices and Private
- Psychedelics for Vets? CCHR Cites History of Exploitation and Failed Science