Trending...
- UK Financial Ltd Confirms Official Corporate Structure of the Maya Preferred Project and Its Dual-Class Token System
- Daniel S. Romero, CFP® Earns Renowned Certification for Fiduciary Excellence
- California: Coho salmon are making a comeback in the Russian River for the first time in 30 years
LOS ANGELES - Californer -- Controlling asymmetric light propagation—where light preferentially travels in one direction while being blocked or scattered in the opposite direction—has been a longstanding need in optical systems. Traditional solutions often rely on specialized material properties or nonlinear materials, which require relatively complex and costly fabrication methods, bulky hardware, and high-power laser sources. Other approaches, including asymmetric gratings and metamaterials, have shown promise but remain limited due to their polarization and wavelength sensitivity, complex design constraints, and poor performance under oblique illumination.
The new diffractive unidirectional light focusing system developed by UCLA researchers addresses these challenges through a different approach. By using deep learning to optimize the structures of a series of passive, isotropic diffractive layers, the team created a compact and broadband optical system that efficiently focuses light in the forward direction while suppressing light focusing in the reverse direction. This design is inherently polarization-insensitive and scalable across multiple wavelengths, enabling consistent unidirectional light control over a broad spectral range. Unlike traditional methods that rely on complex materials or nonlinear optical effects, this deep learning-based optimized 3D structure achieves asymmetric light propagation using passive, isotropic diffractive layers, eliminating the need for active modulation or high-power sources.
More on The Californer
The UCLA research team demonstrated the effectiveness of their system using terahertz (THz) radiation. Using a 3D printer, they fabricated a two-layer diffractive structure that successfully focused the THz radiation in the forward direction while blocking backward-propagating energy. This experimental validation confirmed the system's practical capability for all-optical, passive control of unidirectional light propagation.
By enabling directional control of light without relying on active modulation, nonlinear materials or high-power sources, this technology can be used to enhance the efficiency and security of free-space optical links, particularly under dynamic or noisy conditions. Furthermore, the compact and passive nature of the system makes it ideal for integration into advanced imaging and sensing platforms, where directional light control can enhance signal clarity and reduce background interference in complex or cluttered settings. By suppressing unwanted back-reflections, this technology can also be used to enhance the stability and performance of a wide range of optical systems—including laser machining platforms, biomedical instruments, and precision metrology setups—where the reflected light can otherwise introduce noise, reduce accuracy, or damage sensitive components.
More on The Californer
The study was supported by the US National Science Foundation (NSF). The co-authors of this publication include graduate students Y. Li, T. Gan, J. Li as well as Professors M. Jarrahi and A. Ozcan, all from UCLA.
Original paper: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adom.202403371
The new diffractive unidirectional light focusing system developed by UCLA researchers addresses these challenges through a different approach. By using deep learning to optimize the structures of a series of passive, isotropic diffractive layers, the team created a compact and broadband optical system that efficiently focuses light in the forward direction while suppressing light focusing in the reverse direction. This design is inherently polarization-insensitive and scalable across multiple wavelengths, enabling consistent unidirectional light control over a broad spectral range. Unlike traditional methods that rely on complex materials or nonlinear optical effects, this deep learning-based optimized 3D structure achieves asymmetric light propagation using passive, isotropic diffractive layers, eliminating the need for active modulation or high-power sources.
More on The Californer
- "Unwrap" This Bad Boy for Christmas - A New Home
- Community Commitment Advances Student Opportunity at Moorpark College
- Rachel Farris, CPA, Founder of Tax Stack AI, Featured in Boss Today on Ethical AI Leadership
- 5-Star Duncan Injury Group Expands Personal Injury Representation to Arizona
- The End of "Influencer" Gambling: Bonusetu Analyzes Finland's Strict New Casino Marketing Laws
The UCLA research team demonstrated the effectiveness of their system using terahertz (THz) radiation. Using a 3D printer, they fabricated a two-layer diffractive structure that successfully focused the THz radiation in the forward direction while blocking backward-propagating energy. This experimental validation confirmed the system's practical capability for all-optical, passive control of unidirectional light propagation.
By enabling directional control of light without relying on active modulation, nonlinear materials or high-power sources, this technology can be used to enhance the efficiency and security of free-space optical links, particularly under dynamic or noisy conditions. Furthermore, the compact and passive nature of the system makes it ideal for integration into advanced imaging and sensing platforms, where directional light control can enhance signal clarity and reduce background interference in complex or cluttered settings. By suppressing unwanted back-reflections, this technology can also be used to enhance the stability and performance of a wide range of optical systems—including laser machining platforms, biomedical instruments, and precision metrology setups—where the reflected light can otherwise introduce noise, reduce accuracy, or damage sensitive components.
More on The Californer
- AI-Driven Cybersecurity Leader Gains Industry Recognition, Secures $6M Institutional Investment, Builds Momentum Toward $16M Annual Run-Rate Revenue
- TRIO Heating, Air & Plumbing Now Ranks #1 in San Jose
- Lights, camera, action! Governor Newsom announces 28 new films coming to California, set to boost local economies
- Milwaukee Job Corps Center Hosts Alumni Day, Calls Alumni to Action on Open Enrollment Campaign
- Connect Promotes Dr. Petra Stegmann as Head of Entrepreneurial Programs
The study was supported by the US National Science Foundation (NSF). The co-authors of this publication include graduate students Y. Li, T. Gan, J. Li as well as Professors M. Jarrahi and A. Ozcan, all from UCLA.
Original paper: https://advanced.onlinelibrary.wiley.com/doi/full/10.1002/adom.202403371
Source: ucla ita
Filed Under: Science
0 Comments
Latest on The Californer
- LaTerra and Respark Under Contract with AIMCO to Acquire a $455M, 7-Property Chicago Multifamily Portfolio
- Record Revenue, Tax Tailwinds, and AI-Driven Scale: Why Off The Hook YS Inc. Is Emerging as a Standout in the $57 Billion U.S. Marine Market
- VSee Health (N A S D A Q: VSEE) Secures $6.0M At-Market Investment, Accelerates Expansion as Revenues Surge
- Children Rising Appoints Marshelle A. Wilburn as New Executive Director
- Fairmint CEO Joris Delanoue Elected General Director of the Canton Foundation
- Sleep Basil Mattress Co.'s Debuts New Home Page Showcasing Performance Sleep Solutions for Active Denver Lifestyles
- Bent Danholm Joins The American Dream TV as Central Florida Host
- Ship Overseas Inc Expands Heavy Equipment Shipping Operations into Africa
- The Nature of Miracles Celebrates 20th Anniversary Third Edition Published by DreamMakers Enterprises LLC
- Inboox.ai Launches Searchable Library of Real Marketing Emails Powered by AI Analysis
- Artificial Intelligence Leader Releases Children's Book on Veterans Day
- California continues to lead the nation in fusion energy, investing in technology of the future
- Felicia Allen Hits #1 Posthumously with "Christmas Means Worship"
- CCHR Documentary Probes Growing Evidence Linking Psychiatric Drugs to Violence
- IEI Introduces HTB-300-MTL-H: Ultra-Compact Medical AI Embedded System
- Mesa West Capital Funds $30 MM Loan for Acquisition of Industrial Asset in San Francisco Bay Area
- 40th Annual California Strawberry Festival Accepting Applications for Arts & Crafts Vendors
- Play with Purpose: Meemzy Magic Sensory Kits Support Child Development in a Fun Format
- California: Governor Newsom announces top former CDC officials to lead public health innovation, collaboration
- Tokenized Real-World Assets: Iguabit Brings Institutional Investment Opportunities to Brazil