Trending...
- New Book "Curing Racism" Offers Hopeful Path to Healing America's Deepest Divide
- Cal State LA named Pathway Champion for advancing equitable transfer pathways
- Hypnotic Hijinks of HypnoMarc Rolls into Sunnyvale for One Night Only
LOS ANGELES - Californer -- Traditional optical imaging technologies rely on intensity-based sensors that can only capture the amplitude of light, leaving out the crucial phase information. Phase information provides insights into structural properties such as absorption and refractive index distributions, which are essential for detailed sample analysis. Current methods to capture phase information involve complex interferometric or holographic systems supplemented by iterative phase retrieval algorithms, resulting in increased hardware complexity and computational demand.
A team at UCLA, led by Professor Aydogan Ozcan, has developed a novel complex field imager that overcomes these limitations. This innovative device uses a series of deep learning-optimized diffractive surfaces to modulate incoming complex fields. These surfaces create two independent imaging channels that transform the amplitude and phase of the input fields into intensity distributions on the sensor plane. This approach eliminates the need for any digital reconstruction algorithms, simplifying the imaging process significantly.
More on The Californer
The new complex field imager consists of spatially engineered diffractive surfaces arranged to perform amplitude-to-amplitude and phase-to-intensity transformations. These transformations allow the device to directly measure the amplitude and phase profiles of input complex fields. The imager's compact optical design spans approximately 100 wavelengths axially, making it highly integrable into existing optical systems.
The researchers validated their designs through 3D-printed prototypes operating in the terahertz spectrum. The experimental results showed a high degree of accuracy, with the output amplitude and phase channel images closely matching numerical simulations. This proof-of-concept demonstration highlights the potential of the complex field imager for real-world applications.
This breakthrough opens up a wide range of applications. In the biomedical field, the imager can be used for real-time, non-invasive imaging of tissues and cells, providing critical insights during medical procedures. Its compact and efficient design makes it suitable for integration into endoscopic devices and miniature microscopes, potentially advancing point-of-care diagnostics and intraoperative imaging.
More on The Californer
In environmental monitoring, the imager can facilitate the development of portable lab-on-a-chip sensors for rapid detection of microorganisms and pollutants. Its portability and ease of use make it an ideal tool for on-site quantitative analysis, streamlining the process of environmental assessment.
The complex field imager also holds promise for industrial applications, where it can be used for the rapid inspection of materials. Its ability to capture detailed structural information without the need for bulky equipment or extensive computational resources makes it a valuable asset in quality control and material analysis.
The research was conducted by a team from the Electrical and Computer Engineering Department, Bioengineering Department, and California NanoSystems Institute at UCLA. The team includes Jingxi Li, Yuhang Li, Tianyi Gan, Che-Yung Shen, Professor Mona Jarrahi and Professor Aydogan Ozcan. This work was supported by the Office of Naval Research (ONR).
Link: https://www.nature.com/articles/s41377-024-01482-6
A team at UCLA, led by Professor Aydogan Ozcan, has developed a novel complex field imager that overcomes these limitations. This innovative device uses a series of deep learning-optimized diffractive surfaces to modulate incoming complex fields. These surfaces create two independent imaging channels that transform the amplitude and phase of the input fields into intensity distributions on the sensor plane. This approach eliminates the need for any digital reconstruction algorithms, simplifying the imaging process significantly.
More on The Californer
- Stars Shine at the Premiere of Whiskey Run
- California: As Trump cuts fire response, Governor Newsom expands the state's fire prevention strategy using proven beneficial fire techniques
- Heritage at South Brunswick's Townhome Models Coming Soon!
- PatientNow Acquires Recura, the AI Growth Engine Powering Practice Growth
- Womanness(TM) Skin Care by Jeanne Marie Spicuzza Launches New Product!
The new complex field imager consists of spatially engineered diffractive surfaces arranged to perform amplitude-to-amplitude and phase-to-intensity transformations. These transformations allow the device to directly measure the amplitude and phase profiles of input complex fields. The imager's compact optical design spans approximately 100 wavelengths axially, making it highly integrable into existing optical systems.
The researchers validated their designs through 3D-printed prototypes operating in the terahertz spectrum. The experimental results showed a high degree of accuracy, with the output amplitude and phase channel images closely matching numerical simulations. This proof-of-concept demonstration highlights the potential of the complex field imager for real-world applications.
This breakthrough opens up a wide range of applications. In the biomedical field, the imager can be used for real-time, non-invasive imaging of tissues and cells, providing critical insights during medical procedures. Its compact and efficient design makes it suitable for integration into endoscopic devices and miniature microscopes, potentially advancing point-of-care diagnostics and intraoperative imaging.
More on The Californer
- L-Tron Team to Attend Embedded World North America in Anaheim, CA
- Tule River Indian Tribe of California reclaims over 17,000 acres and reintroduces tule elk on ancestral land
- The Claremont Colleges Centennial
- City of Long Beach to Host Community Meeting on Marine Debris and Trash Capture System
- Boston Industrial Solutions Unveils New and Improved Natron® UV Screen Printing Ink
In environmental monitoring, the imager can facilitate the development of portable lab-on-a-chip sensors for rapid detection of microorganisms and pollutants. Its portability and ease of use make it an ideal tool for on-site quantitative analysis, streamlining the process of environmental assessment.
The complex field imager also holds promise for industrial applications, where it can be used for the rapid inspection of materials. Its ability to capture detailed structural information without the need for bulky equipment or extensive computational resources makes it a valuable asset in quality control and material analysis.
The research was conducted by a team from the Electrical and Computer Engineering Department, Bioengineering Department, and California NanoSystems Institute at UCLA. The team includes Jingxi Li, Yuhang Li, Tianyi Gan, Che-Yung Shen, Professor Mona Jarrahi and Professor Aydogan Ozcan. This work was supported by the Office of Naval Research (ONR).
Link: https://www.nature.com/articles/s41377-024-01482-6
Source: ucla ita
Filed Under: Science
0 Comments
Latest on The Californer
- Carmen Sinata's Raw Demo 'More,' Defying AI-Era Perfection with Real Emotion
- Artwork by a Medea Creek Middle Schooler Selected to Appear in 2026 MWD Calendar
- Oleh Podobied & EDCAPIT Showcased at STARTUPS MIX & PITCH in Silicon Valley (Hacker Dojo)
- Words of Veterans & Veterans Growing America Collaboration
- Mature Athlete - Want Elite, Web-Based Nutrition and Training Coaching?
- Engaged at Any Age: 73-Year-Old Client Finds True Love Through Elite Asian Matchmaker
- California: CHP hits the Bay Area streets, enforces public safety through its crime suppression teams
- Launch of Professional Private Autopsy Services to Support Families, Professionals, and Researchers
- He Started a New Career at 77; Maybe Not His Last
- "The Art of Philanthropy" — A Year-Long Campaign Supporting the USO and Military Veterans
- TRUE Palliative Care Launches as California Strengthens Commitment to Compassionate Care Under SB 403
- California: Governor Newsom sues Trump Administration for illegally withholding SNAP food benefits
- Governor Newsom predeploys firefighting resources Southern California ahead of dangerous fire weather
- Mysterious Interstellar Object 3I/ATLAS Appears to Pause Near Mars, Exhibiting Periodic Light Pulses
- New Certification Bridges Luxury Hospitality and Branded Residential Real Estate
- WDBVC Launches PEER Up Grant Program to Empower Individuals with Disabilities
- $73.6 Million in Order Backlog Poised for Explosive Growth in 2026; Streamlined Share Structure: Cycurion, Inc. (N A S D A Q: CYCU) $CYCU
- Osric Langevin Unveils "Quantitative Trend" Framework for Multi-Asset Analysis in Q4 2025
- Experience Days Named Among the UK's Top Christmas Gifts
- New Free Educational Bingo Cards Make Learning English Fun for First Graders