Trending...
- Ayurveda, Ayurvedic medical Science and Ayurvedic Therapies, Dr.Abhay Kumar Pati - 407
- "Leading From Day One: The Essential Guide for New Supervisors" Draws from 25+ Years of International Management Experience - 263
- NoviSign Sponsoring VARTECH 2025 - the B2B IT channel's #1 event - 241
LOS ANGELES - Californer -- Scientists at UCLA have unveiled a groundbreaking technology that could revolutionize the fields of imaging and optical communications. Led by Aydogan Ozcan and his team, the research introduces an all-optical phase conjugation (OPC) method using diffractive wavefront processing. This new technique offers unprecedented capabilities in correcting optical distortions at multiple wavelengths and could have significant implications across various fields.
Traditional methods of OPC, which include analog and digital techniques, have long been used to correct wavefront distortions in applications ranging from medical imaging to laser beam focusing. However, these methods often come with limitations such as low energy efficiency, narrow-band spectral operation, high system complexity, and slow response times.
The new all-optical phase conjugation approach developed by UCLA researchers overcomes these challenges by using deep learning to optimize a set of passive diffractive layers that can process distorted optical fields and all-optically generate their phase-conjugated counterparts at multiple wavelengths. This method is not only faster and more energy-efficient but also more compact and scalable than existing technologies, covering applications spanning different spectral bands.
More on The Californer
The innovative OPC framework is built on deep learning-engineered diffractive optical structures. These structures are designed to perform phase conjugation on optical fields with unknown phase distortions. By passing light through a series of 3D-printed diffractive layers, the system can transform distorted wavefronts at multiple wavelengths into conjugated ones at the speed of light, without the need for digital computation or active modulation.
The UCLA team demonstrated the efficacy of their system using terahertz (THz) radiation. They fabricated a three-layer diffractive OPC processor and successfully corrected optical distortions that had never been encountered during the training of the model. This experimental validation confirms the system's capability to handle real-world optical distortions effectively.
The versatility and robustness of this all-optical OPC technology make it a promising candidate for a wide range of applications including medical imaging, optical communications, laser systems and astronomy. The research team is now exploring ways to extend the technology to operate across different spectral bands, including visible and infrared light. This would open up new possibilities in areas such as environmental monitoring, security, and beyond.
More on The Californer
"Our all-optical phase conjugation framework offers a novel and effective solution to a problem that has challenged scientists for decades," said Aydogan Ozcan, lead author and professor of electrical and computer engineering at UCLA. "We are excited about the potential applications of this technology and are committed to advancing its development for practical uses."
The study was supported by the Office of Naval Research (ONR). The co-authors of this publication include graduate students C-Y. Shen, J. Li, T. Gan, Y. Li as well as Professors M. Jarrahi and A. Ozcan, all from UCLA.
Original publication: https://www.nature.com/articles/s41467-024-49304-y
Traditional methods of OPC, which include analog and digital techniques, have long been used to correct wavefront distortions in applications ranging from medical imaging to laser beam focusing. However, these methods often come with limitations such as low energy efficiency, narrow-band spectral operation, high system complexity, and slow response times.
The new all-optical phase conjugation approach developed by UCLA researchers overcomes these challenges by using deep learning to optimize a set of passive diffractive layers that can process distorted optical fields and all-optically generate their phase-conjugated counterparts at multiple wavelengths. This method is not only faster and more energy-efficient but also more compact and scalable than existing technologies, covering applications spanning different spectral bands.
More on The Californer
- Nationwide Boiler Supplies In-Stock 200K lb/hr Ultra Low NOx Boiler Package for Recovery Efforts i
- Ventura College Foundation Accepting Scholarship Applications for 2026-27 School Year
- C3.ai, Inc. (AI) Investors Who Lost Money Have Opportunity to Lead Securities Fraud Lawsuit
- California: Governor Newsom proclaims Constitution Day and Citizenship Day
- California: Governor Newsom signs legislation 9.17.25
The innovative OPC framework is built on deep learning-engineered diffractive optical structures. These structures are designed to perform phase conjugation on optical fields with unknown phase distortions. By passing light through a series of 3D-printed diffractive layers, the system can transform distorted wavefronts at multiple wavelengths into conjugated ones at the speed of light, without the need for digital computation or active modulation.
The UCLA team demonstrated the efficacy of their system using terahertz (THz) radiation. They fabricated a three-layer diffractive OPC processor and successfully corrected optical distortions that had never been encountered during the training of the model. This experimental validation confirms the system's capability to handle real-world optical distortions effectively.
The versatility and robustness of this all-optical OPC technology make it a promising candidate for a wide range of applications including medical imaging, optical communications, laser systems and astronomy. The research team is now exploring ways to extend the technology to operate across different spectral bands, including visible and infrared light. This would open up new possibilities in areas such as environmental monitoring, security, and beyond.
More on The Californer
- New Leadership and Renovations Usher in Next Chapter for Sunrise Manor
- Following Trump's politicization of CDC, West Coast states issue unified vaccine recommendations — California breaks from future federal guidance with new law
- Who Will Win the 2025 WNBA Finals? OddsTrader Shares Live Betting Odds and Projections
- Silva Construction Weighs In on the Most Popular Home Design Trends for 2026
- Geeks5g Creative Marketing: The Powerhouse Behind Business Growth
"Our all-optical phase conjugation framework offers a novel and effective solution to a problem that has challenged scientists for decades," said Aydogan Ozcan, lead author and professor of electrical and computer engineering at UCLA. "We are excited about the potential applications of this technology and are committed to advancing its development for practical uses."
The study was supported by the Office of Naval Research (ONR). The co-authors of this publication include graduate students C-Y. Shen, J. Li, T. Gan, Y. Li as well as Professors M. Jarrahi and A. Ozcan, all from UCLA.
Original publication: https://www.nature.com/articles/s41467-024-49304-y
Source: ucla ita
Filed Under: Science
0 Comments
Latest on The Californer
- Dr. Richard Austin Heafey, PsyD, of Unfold Psychology and Heafey Practices, Accused of Misconduct
- Bridging Traditional Finance and Web3 Innovation: BLFCW Announces Strategic Vision for Regulated Web3 Economy
- NKSCX Responds to "Coordinated Smear Campaign" as Anonymous Critics Emerge Following Regulatory Milestones
- Broadway Gala Honored Also an Italian
- $ONI Listed on MEXC as ONINO Powers Europe's Tokenization Engine Into Public Platform Launch
- AZETHIO Crypto Exchange Whitepaper Reveals MPC-Secured Infrastructure Processing 1.2 Million Transactions Per Second
- CELOXFI Platform Demonstrates Advanced Security Architecture and Regulatory Framework
- Sharks and Seaside Resilience in Great White Summer on Documentary Showcase
- Finding LVN Jobs in Los Angeles: A Premier Local Agency in LA County Offers Personalized Help
- Work 365 Launches PV 3.0: The Keystone Power App for Microsoft CSPs
- Affinity Nightlife's Post Awards After Party Celebrated with the Industry's Biggest Stars
- Local consultant shows small businesses how to turn red tape into real money
- Stringify AI Launches Complaint Classifier to Automate Enterprise Support Triage
- Hazel-E Hosts Pop-Up Gifting Suite on Melrose
- iPOP Administration & Talent Fund Clean Water Project in Africa, Through the Thirst Project
- California: Governor Newsom announces appointments 9.16.25
- Hollywood Veterans and Rising Stars Join Forces on "HOA" A Vertical Sitcom Designed for Social Media
- LVN Jobs in LA Establishes Local Presence Offers In-Person Staffing Solutions for LA LVN Job Seekers
- Meet a Scientologist Tunes Up with Auto Expert Jimmy Alauria
- City of Long Beach Launches Second Cohort of Urban Planning and Design Internship Program