Trending...
- Google AI Quietly Corrects the Record on Republic of Aquitaine's Legal Sovereignty - 134
- Hamvay-Lang and Lampone.hu Join Forces with AIMarketingugynokseg.hu to Elevate Hungarian Lifestyle Brands on the Global Stage - 107
- Governor Newsom slams Trump over bill that would cut millions in health coverage, food assistance for California - 101
LOS ANGELES - Californer -- Engineers at the UCLA Samueli School of Engineering have introduced a universal framework for point spread function (PSF) engineering, enabling the synthesis of arbitrary, spatially varying 3D PSFs using diffractive optical processors. This framework allows for advanced imaging capabilities—such as snapshot 3D multispectral imaging—without the need for spectral filters, axial scanning, or digital reconstruction.
PSF engineering plays a significant role in modern microscopy, spectroscopy and computational imaging. Conventional techniques typically employ phase masks at the pupil plane, which constrain the complexity and mathematical representation of the achievable PSF structures. The approach developed at UCLA enables arbitrary, spatially varying 3D PSF engineering through a series of passive surfaces optimized using deep learning algorithms, forming a physical diffractive optical processor.
Through extensive analyses, the researchers showed that these diffractive processors can approximate any linear transformation between 3D optical intensity distributions in the input and output volumes. This enables precise, diffraction-limited control of light in three dimensions, paving the way for highly customized and sophisticated optical functions for 3D optical information processing.
More on The Californer
By jointly engineering the spatial and spectral properties of 3D PSFs, the framework supports powerful imaging modalities such as snapshot 3D multispectral imaging—achieved without mechanical scanning, spectral filters, or computational postprocessing. This all-optical approach offers unmatched versatility for high-speed, high-throughput optical systems.
This work marks a significant stepping-stone for future advances in computational imaging, optical sensing and spectroscopy, as well as 3D optical information processing. Potential applications include compact multispectral imagers, high-throughput 3D microscopy platforms, and novel optical data encoding and transmission systems.
The study was conducted by Dr. Md Sadman Sakib Rahman and Dr. Aydogan Ozcan in the UCLA Electrical and Computer Engineering Department and the California NanoSystems Institute (CNSI).
Paper: https://www.nature.com/articles/s41377-025-01887-x
PSF engineering plays a significant role in modern microscopy, spectroscopy and computational imaging. Conventional techniques typically employ phase masks at the pupil plane, which constrain the complexity and mathematical representation of the achievable PSF structures. The approach developed at UCLA enables arbitrary, spatially varying 3D PSF engineering through a series of passive surfaces optimized using deep learning algorithms, forming a physical diffractive optical processor.
Through extensive analyses, the researchers showed that these diffractive processors can approximate any linear transformation between 3D optical intensity distributions in the input and output volumes. This enables precise, diffraction-limited control of light in three dimensions, paving the way for highly customized and sophisticated optical functions for 3D optical information processing.
More on The Californer
- Orion Retreats: Pioneering the Future of Conscious Leadership and Luxury Wellness Tourism
- Cynthia Pinot Among Artists Selected for Renowned London Art Biennale 2025
- Real Estate Experts Highlight Jersey Shore as a Smart Buy in 2025
- California: Governor Newsom statement on passage of Trump's "Big, Beautiful Betrayal"
- From Barrio to Transgender Pioneer: Chapter 12 of A Letter to Pawtone
By jointly engineering the spatial and spectral properties of 3D PSFs, the framework supports powerful imaging modalities such as snapshot 3D multispectral imaging—achieved without mechanical scanning, spectral filters, or computational postprocessing. This all-optical approach offers unmatched versatility for high-speed, high-throughput optical systems.
This work marks a significant stepping-stone for future advances in computational imaging, optical sensing and spectroscopy, as well as 3D optical information processing. Potential applications include compact multispectral imagers, high-throughput 3D microscopy platforms, and novel optical data encoding and transmission systems.
The study was conducted by Dr. Md Sadman Sakib Rahman and Dr. Aydogan Ozcan in the UCLA Electrical and Computer Engineering Department and the California NanoSystems Institute (CNSI).
Paper: https://www.nature.com/articles/s41377-025-01887-x
Source: ucla ita
Filed Under: Science
0 Comments
Latest on The Californer
- Raidium révolutionne le diagnostic de la Sclérose en Plaques en partenariat avec l'Hôpital Fondation Adolphe de Rothschild
- Porta Potty USA Expands its Convenient Portable Restroom Rental Services Business in Montana Area
- Countrywide Fence Rental Expands its Temporary Fence Rental Business in Minnesota Area
- A Shepherd's Legacy: Honoring the Life and Impact of Pastor Ross Reinman
- California: Here's how President Trump's tax cuts for the ultra-rich will hurt YOU
- New Media Film Festival Announces Winners
- New Podcast "Spreading the Good BUZZ" Hosted by Josh and Heidi Case Launches July 7th with Explosive Global Reach and a Mission to Transform Lives
- DetailAxis Unveils it's 'Business Engine': Powerful AI Systems for Auto Appearance Pros
- California: Governor Newsom announces appointments 7.2.25
- The Herbal Care, Led by Markel Bababekov, Becomes a Top Dispensary in NYC's Upper East Side
- Digital Watchdog Launches New myDW Cloud Services
- Governor Newsom honors fallen California Highway Patrol Officer Miguel Cano
- Stan Fitzgerald Appointed Acting Press Secretary for Veterans for America First VFAF Georgia State Chapter
- Drone Light Shows Emerge as the New Standard in Live Event Entertainment
- Lore Link is Here to Help Organize Your Game
- Governor Newsom marks historic expansion of California's Film and Television Tax Credit Program, announces 16 new projects to film in the Golden State
- Talar Guedikian Named Winner of 2025 AAJ Paralegal of the Year Award, Sponsored by Advocate Capital
- Chappaqua's Annual Townwide Summer Sale – Unbeatable Savings at Your Favorite Local Boutiques!
- Skyline Partners with ZenSpace to Offer Private Meeting Pods for Trade Show Exhibitors
- California: Did gas prices go up by 65 cents at the pump? No.