Trending...
- Southern Soul Artist Moe Z Releases New Single 'Set It Out' Distributed by Morris Day Entertainment
- Skool Alternatives Reddit: Skool vs Circle vs Whop - Did you join one yet?
- Cal State LA secures funding for two artificial intelligence projects from CSU
LOS ANGELES - Californer -- A recent study from the University of California, Los Angeles, introduces a cutting-edge approach to 3D Quantitative Phase Imaging using a wavelength-multiplexed diffractive optical processor. Quantitative Phase Imaging (QPI) is a powerful technique that reveals variations in optical path length caused by weakly scattering samples, enabling the generation of high-contrast images of transparent specimens. Traditional 3D QPI methods, while effective, are limited by the need for multiple illumination angles and extensive digital post-processing for 3D image reconstruction, which can be time-consuming and computationally intensive.
In this innovative study, the research team developed a wavelength-multiplexed diffractive optical processor capable of all-optically transforming phase distributions of multiple 2D objects at various axial positions into intensity patterns, each encoded at a unique wavelength channel. This design (see Figure) allows for the capture of quantitative phase images of input objects located at different axial planes using an intensity-only image sensor, eliminating the need for digital phase recovery algorithms.
More on The Californer
"We are excited about the potential of this new approach for biomedical imaging and sensing," said Aydogan Ozcan, lead researcher and Chancellor's Professor at UCLA. "Our wavelength-multiplexed diffractive optical processor offers a novel solution for high-resolution, label-free imaging of transparent specimens, which could greatly benefit biomedical microscopy, sensing and diagnostics applications."
The innovative multiplane QPI design incorporates wavelength multiplexing and passive diffractive optical elements that are collectively optimized using deep learning. By performing phase-to-intensity transformations that are spectrally multiplexed, this design enables rapid quantitative phase imaging of specimens across multiple axial planes. This system's compactness and all-optical phase recovery capability make it a competitive analog alternative to traditional digital QPI methods. A proof-of-concept experiment validated the approach, showcasing successful imaging of distinct phase objects at different axial positions in the terahertz spectrum. The scalable nature of the design also allows adaptation to different parts of the electromagnetic spectrum, including the visible and IR bands, using appropriate nano-fabrication methods, paving the way for new phase imaging solutions integrated with focal plane arrays or image sensor arrays for efficient on-chip imaging and sensing devices.
More on The Californer
This research has significant implications for various fields, including biomedical imaging, sensing, materials science, and environmental analysis. By providing a faster, more efficient method for 3D QPI, this technology can enhance the diagnosis and study of diseases, the characterization of materials, and the monitoring of environmental samples, among other applications.
Original paper: https://doi.org/10.1117/1.AP.6.5.056003
In this innovative study, the research team developed a wavelength-multiplexed diffractive optical processor capable of all-optically transforming phase distributions of multiple 2D objects at various axial positions into intensity patterns, each encoded at a unique wavelength channel. This design (see Figure) allows for the capture of quantitative phase images of input objects located at different axial planes using an intensity-only image sensor, eliminating the need for digital phase recovery algorithms.
More on The Californer
- Buy The Crave Launches Premium Creatine and Natural Wellness Supplements for Modern Lifestyles
- Long Beach Parks, Recreation and Marine's Homeland Cultural Center Presents DanceFest at Cesar Chavez Park Amphitheater on August 16
- Sisu, a Portrait of Grit, Connection and Triumph, Premieres on Documentary Showcase
- New Liz Taylor Book Coming Soon: Chasing Elizabeth Taylor
- City of Long Beach Experienced a 4% Decrease in Fireworks-Related Reports on July 4
"We are excited about the potential of this new approach for biomedical imaging and sensing," said Aydogan Ozcan, lead researcher and Chancellor's Professor at UCLA. "Our wavelength-multiplexed diffractive optical processor offers a novel solution for high-resolution, label-free imaging of transparent specimens, which could greatly benefit biomedical microscopy, sensing and diagnostics applications."
The innovative multiplane QPI design incorporates wavelength multiplexing and passive diffractive optical elements that are collectively optimized using deep learning. By performing phase-to-intensity transformations that are spectrally multiplexed, this design enables rapid quantitative phase imaging of specimens across multiple axial planes. This system's compactness and all-optical phase recovery capability make it a competitive analog alternative to traditional digital QPI methods. A proof-of-concept experiment validated the approach, showcasing successful imaging of distinct phase objects at different axial positions in the terahertz spectrum. The scalable nature of the design also allows adaptation to different parts of the electromagnetic spectrum, including the visible and IR bands, using appropriate nano-fabrication methods, paving the way for new phase imaging solutions integrated with focal plane arrays or image sensor arrays for efficient on-chip imaging and sensing devices.
More on The Californer
- The Blue Luna Encourages Local Schools to Take Steps to Enhance Safety for Students and Staff
- Wise Business Plans Launches Turnkey Startup Packages to Help Entrepreneurs Start and Scale
- CarSeek Re-Launch: A New Look, A Better Experience for Car Buyers
- California: Governor Newsom provides $11 million to organizations helping underserved job seekers find training and employment
- For Artificial Intelligence Appreciation Day: Celebrate it with a poem about AI called "Robot Love"
This research has significant implications for various fields, including biomedical imaging, sensing, materials science, and environmental analysis. By providing a faster, more efficient method for 3D QPI, this technology can enhance the diagnosis and study of diseases, the characterization of materials, and the monitoring of environmental samples, among other applications.
Original paper: https://doi.org/10.1117/1.AP.6.5.056003
Source: ucla ita
Filed Under: Science
0 Comments
Latest on The Californer
- Stuck Doing Math or Figuring Out Life's Numbers? Calculator.now Makes It Stupidly Simple
- Cal State LA secures funding for two artificial intelligence projects from CSU
- Colbert Packaging Announces WBENC Recognition
- New Mobile Car Detailing Platform Connects Drivers with On-Demand Local Pros
- Over the past three months, California seized $476 million worth of unlicensed cannabis products
- California scores more clean energy records: 9 in 10 days this year partially powered by 100% clean energy
- "Mobile Suit Gundam" Takes Over San Diego Comic-Con 2025
- DivX Empowers Media Enthusiasts with Free Expert Guides for Advanced MP4 Management
- Assent Expands Executive Team to Accelerate Global Growth & Innovation
- The World's Largest Green Economic Revolution Emerges as Nature, Tech, and Finance Converge
- Hamilton Zanze Sponsors the Acquisition of Two Garden-Style Communities in Reno Area
- Meet a Scientologist Captures Greece's Timeless Beauty with Videographer Lambros Malamas
- Vinnetwork Unveils Decentralized AI Platform with Vinnetwork(VIN) Token to Challenge Tech Giants' Data Monopoly
- Moovs Launches Advanced Contact Center Solution for Large-Scale Transportation Operations
- Centennial Flyers to Become Colorado's First Launch Customer for All-Electric B23 Energic Aircraft
- Second Annual Artists' Rights Advocate Award to Be Presented at The Comedy Store on July 17th
- Pyro Marketing Opens New Digital Marketing Company in Saint Petersburg to Power Growth for Fitness and Ecommerce Brands
- Dr. John Salerno of Salerno Wellness Introduces Their New Full Body Capsule for Advanced LED Light Therapy Patient Treatments
- Ship Overseas Inc. Expands Specialized Shipping Services
- Governor Newsom announces additional deployment of California resources to support New Mexico following Texas and Oregon disaster response efforts