Trending...
- "Leading From Day One: The Essential Guide for New Supervisors" Draws from 25+ Years of International Management Experience - 335
- New Slotozilla Project Explores What Happens When the World Goes Silent - 267
- City of Long Beach Launches Second Cohort of Urban Planning and Design Internship Program - 207
LOS ANGELES - Californer -- Diffractive deep neural networks (D2NNs) are optical systems composed of successive transmissive layers optimized through deep learning to perform computational tasks in an all-optical manner. The UCLA research team, led by Professor Aydogan Ozcan, has developed a pyramid-structured diffractive optical network, which scales its layers pyramidally to align with the direction of image magnification or demagnification. This design ensures high-fidelity image formation in one direction while inhibiting it in the opposite direction, achieving unidirectional imaging with fewer diffractive degrees of freedom. The researchers also demonstrated that by cascading multiple P-D2NN modules, higher magnification/demagnification factors can be achieved, showcasing the system's modularity and scalability.
The P-D2NN architecture was experimentally validated using terahertz (THz) illumination. The diffractive layers, fabricated through 3D printing, were tested under continuous-wave THz illumination. The experimental results, involving different designs for magnification and demagnification, closely matched the numerical simulations. The outputs in the forward direction accurately reflected the magnified or demagnified input images, while the outputs in the backward direction produced low-intensity, non-informative results, as desired for unidirectional imaging.
More on The Californer
Applications and Future Prospects:
The P-D2NN framework's ability to suppress backward energy transmission while dispersing the original signal into unperceivable noise at the output makes it a promising tool for various applications. These include optical isolation for photonic devices, decoupling of transmitters and receivers in telecommunications, privacy-protected optical communications, and surveillance.
Moreover, the system's polarization-insensitive operation and ability to deliver high-power structured beams onto target objects while protecting the source from counterattacks highlight its potential in various defense-related applications.
Authors of this article include Bijie Bai, Xilin Yang, Tianyi Gan, Jingxi Li, Deniz Mengu, Mona Jarrahi, and Aydogan Ozcan, who are affiliated with UCLA Electrical and Computer Engineering Department. Professor Ozcan also serves as an associate director of the California NanoSystems Institute (CNSI).
This research was supported by the US Office of Naval Research (ONR).
Original article: https://www.nature.com/articles/s41377-024-01543-w
The P-D2NN architecture was experimentally validated using terahertz (THz) illumination. The diffractive layers, fabricated through 3D printing, were tested under continuous-wave THz illumination. The experimental results, involving different designs for magnification and demagnification, closely matched the numerical simulations. The outputs in the forward direction accurately reflected the magnified or demagnified input images, while the outputs in the backward direction produced low-intensity, non-informative results, as desired for unidirectional imaging.
More on The Californer
- One Park Financial Earns Great Place to Work® Certification for the Eighth Time
- Los Angeles Affordable Healthcare Provider CCHC Reminds Families to Prioritize Vaccines and Wellness for Back-to-School Season
- Meet a Scientologist Makes Magic with Larry Soffer
- ICYMI: California hotline receives 1,200 reports of hate in 2024
- Open Art Call | The Art of Artificial Intelligence | Copenhagen
Applications and Future Prospects:
The P-D2NN framework's ability to suppress backward energy transmission while dispersing the original signal into unperceivable noise at the output makes it a promising tool for various applications. These include optical isolation for photonic devices, decoupling of transmitters and receivers in telecommunications, privacy-protected optical communications, and surveillance.
Moreover, the system's polarization-insensitive operation and ability to deliver high-power structured beams onto target objects while protecting the source from counterattacks highlight its potential in various defense-related applications.
Authors of this article include Bijie Bai, Xilin Yang, Tianyi Gan, Jingxi Li, Deniz Mengu, Mona Jarrahi, and Aydogan Ozcan, who are affiliated with UCLA Electrical and Computer Engineering Department. Professor Ozcan also serves as an associate director of the California NanoSystems Institute (CNSI).
This research was supported by the US Office of Naval Research (ONR).
Original article: https://www.nature.com/articles/s41377-024-01543-w
Source: ucla ita
Filed Under: Science
0 Comments
Latest on The Californer
- Zenni Optical Hosts Expert Panel Following the Launch of EyeQLenz™ with Zenni ID Guard™ Featuring Technology Experts Cybersecurity Girl, Judner Aura and Amber Mac
- 3E Launches First AI Agent Designed to Respond with Empathy for College Recruitment
- Security Alert: TZNXG Warns Investors About "Fund Recovery" Scams
- Assent Unveils Extended Producer Responsibility Packaging Solution to Simplify Compliance with Expanding Packaging Laws
- KatalisCoin: "Too Secure" for Bad Actors - Platform Embraces "Excessive Compliance" Criticism
- Blacksmith Raises $10M to Unblock AI Development with Fast CI for GitHub Actions
- Keyanb Exchange Implements Enhanced Security Protocols Amid Industry-Wide Trust Challenges
- TSWHZC Platform Combines Automated Portfolio Management with Proof of Reserves for Brazil Market Entry
- AureaVault Positions Digital Asset Infrastructure for Shifting Monetary Policy Environment
- JQRBT Unveils High-Speed Trading Infrastructure Designed for Growing Institutional Crypto Market
- TOM HAUSKEN: The Space Between
- California: Governor Newsom announces appointments 9.17.25
- Marketing Maven Ranked Top 10 PR Firm in Los Angeles by O'Dwyer's in 2025 Rankings Report
- California Lutheran University Receives Over $2.9 Million in Grant Funding
- Nationwide Boiler Supplies In-Stock 200K lb/hr Ultra Low NOx Boiler Package for Recovery Efforts i
- Ventura College Foundation Accepting Scholarship Applications for 2026-27 School Year
- C3.ai, Inc. (AI) Investors Who Lost Money Have Opportunity to Lead Securities Fraud Lawsuit
- California: Governor Newsom proclaims Constitution Day and Citizenship Day
- California: Governor Newsom signs legislation 9.17.25
- New Leadership and Renovations Usher in Next Chapter for Sunrise Manor