Trending...
- California: Governor Newsom announces judicial appointments 12.22.2025
- Leimert Park Announces Weeklong Kwanzaa Festival & Kwanzaa Parade Celebrating Black History, Culture, and Community
- PODS Local Helps Residents Meet Their 2026 New Year's Resolution
LOS ANGELES - Californer -- Information transfer in free space using ultraviolet, visible, or infrared waves has been gaining interest because of the availability of large bandwidth for high-data-rate communication. However, the presence of opaque occlusions or walls along the path between the transmitter and the receiver often impedes information transfer by blocking the direct line of sight.
In a new article published in Nature Communications, a team of researchers at UCLA Samueli School of Engineering and the California NanoSystems Institute, led by Dr. Aydogan Ozcan, the Chancellor's Professor of Electrical & Computer Engineering and Dr. Mona Jarrahi, the Northrop Grumman Endowed Chair at UCLA, reported a fundamentally new method for delivering optical information around arbitrarily shaped opaque occlusions or walls. This method permits the transmission of optical information, for example, images, around large and dynamically changing opaque occlusions. It is based on digital encoding at the transmitter and diffractive all-optical decoding at the receiver for transferring information around arbitrary opaque occlusions that completely block the direct line of sight between the transmitter and the receiver apertures. In this scheme, any image or spatial information of interest to be transferred is encoded in the phase channel of the transmitted wave. This transmitted phase structure is calculated by an encoder neural network trained using deep learning, and it is scattered by the opaque occlusion or wall that blocks the path between the transmitter and the receiver. However, the scattered light from the edges of the opaque wall travels to a special receiver that is optimized to decode the encoder's message. This decoding of the received wave happens without any external power or digital data processing, and it only uses passive diffraction of light through a set of spatially engineered surfaces (diffractive layers) that were also optimized using deep learning to all-optically recover the original information at the output field-of-view.
More on The Californer
UCLA researchers demonstrated their method experimentally by transmitting images around arbitrarily shaped opaque occlusions/walls using terahertz waves. This method was shown to be resilient to unknown changes in the communication channel and can transmit images around opaque occlusions that change their size and shape over time. The researchers believe that their framework will find applications in emerging high-data-rate free space communication systems. Furthermore, the UCLA team's approach to engineering the edge scattering function from opaque occlusions could also enable numerous applications in security, robotics, and wearable devices, including power delivery to mobile units beyond occlusions or seeing objects sandwiched between occlusions.
Authors of this work are Md Sadman Sakib Rahman, Tianyi Gan, Emir Arda Deger, Çağatay Işıl, Mona Jarrahi, and Aydogan Ozcan of UCLA Samueli School of Engineering and the California NanoSystems Institute (CNSI). The researchers acknowledge the funding of the US Department of Energy (DOE).
More on The Californer
Nature Communications Article: https://www.nature.com/articles/s41467-023-42556-0
In a new article published in Nature Communications, a team of researchers at UCLA Samueli School of Engineering and the California NanoSystems Institute, led by Dr. Aydogan Ozcan, the Chancellor's Professor of Electrical & Computer Engineering and Dr. Mona Jarrahi, the Northrop Grumman Endowed Chair at UCLA, reported a fundamentally new method for delivering optical information around arbitrarily shaped opaque occlusions or walls. This method permits the transmission of optical information, for example, images, around large and dynamically changing opaque occlusions. It is based on digital encoding at the transmitter and diffractive all-optical decoding at the receiver for transferring information around arbitrary opaque occlusions that completely block the direct line of sight between the transmitter and the receiver apertures. In this scheme, any image or spatial information of interest to be transferred is encoded in the phase channel of the transmitted wave. This transmitted phase structure is calculated by an encoder neural network trained using deep learning, and it is scattered by the opaque occlusion or wall that blocks the path between the transmitter and the receiver. However, the scattered light from the edges of the opaque wall travels to a special receiver that is optimized to decode the encoder's message. This decoding of the received wave happens without any external power or digital data processing, and it only uses passive diffraction of light through a set of spatially engineered surfaces (diffractive layers) that were also optimized using deep learning to all-optically recover the original information at the output field-of-view.
More on The Californer
- Donna Cardellino Manager/Facilitator Signs Justin Jeansonne Country Singer-Songwriter To Exclusive Management Deal For Global Music Expansion
- Golden Paper Launches a New Chapter in Its Americas Strategy- EXPOPRINT Latin America 2026 in Brazil
- Impact & Influence Magazine Surpasses 40,000 Subscribers Nationwide
- Car Wash Promo Codes in Northridge CA Are Becoming Obsolete
- Car Wash Coupons in Northridge, CA Are No Longer Necessary
UCLA researchers demonstrated their method experimentally by transmitting images around arbitrarily shaped opaque occlusions/walls using terahertz waves. This method was shown to be resilient to unknown changes in the communication channel and can transmit images around opaque occlusions that change their size and shape over time. The researchers believe that their framework will find applications in emerging high-data-rate free space communication systems. Furthermore, the UCLA team's approach to engineering the edge scattering function from opaque occlusions could also enable numerous applications in security, robotics, and wearable devices, including power delivery to mobile units beyond occlusions or seeing objects sandwiched between occlusions.
Authors of this work are Md Sadman Sakib Rahman, Tianyi Gan, Emir Arda Deger, Çağatay Işıl, Mona Jarrahi, and Aydogan Ozcan of UCLA Samueli School of Engineering and the California NanoSystems Institute (CNSI). The researchers acknowledge the funding of the US Department of Energy (DOE).
More on The Californer
- US Van Rental Expands Group Transportation Services Across Los Angeles
- GIFTAWAY's Wood Wick Candle Collection Sets the Tone for the New Year
- Inclusive Hip-Hop Dance Class with Culture Shock Celebrates Movement Without Limits
- Long Beach: El Dorado Nature Center to Hold New Year, New Use Recycling Drive
- UK Financial Ltd Executes Compliance Tasks Ahead Of First-Ever ERC-3643 Exchange-Traded Token, SMCAT & Sets Date For Online Investor Governance Vote
Nature Communications Article: https://www.nature.com/articles/s41467-023-42556-0
Source: UCLA ITA
Filed Under: Science
0 Comments
Latest on The Californer
- A Well-Fed World, Youth Climate Save and PAN International Launch PHRESH: A Global Directory of Plant-Based Hunger Relief Organizations
- 4-Hour Work Day: Jon Robert Quinn Challenges Hustle Culture and Redefines Entrepreneurial Success
- Long Beach: City Announces Conclusion of SEED Program Following Loss of Federal Funding, Launches LBPL Creativity Lab
- Long Beach Health Department Launches Expanded Fund Initiatives to Support Community Health and Local Nonprofits
- California turns winter season rain into future water supply
- City of Long Beach Extends Inclement Weather Action Plans
- Louisa Gillis at North Coast Repertory Theatre
- California: Governor Newsom declares states of emergency related to multiple severe weather events in 2025
- California: Governor Newsom deploys dedicated teams to fight crime in Stockton, building on existing successful partnerships
- BanksyLee.com Is Redefining Daily Financial Insight for the Modern Investor
- California: Governor and LA Rises announce new online resource to further help LA fire survivors navigate rebuilding
- California: Governor Newsom's SAFE Task Force partners with Sacramento to clear encampment
- Guests Can Save 25 Percent Off Last Minute Bookings at KeysCaribbean's Village at Hawks Cay Villas
- Prop 1 brings new projects creating hundreds of housing units for Californians, including veterans
- Trump's Executive Order Rescheduling Cannabis: Accelerating M&A in a Multibillion-Dollar Industry
- Genuine Hospitality, LLC Selected to Operate Hilton Garden Inn Birmingham SE / Liberty Park
- Documentary "Prescription for Violence: Psychiatry's Deadly Side Effects" Premieres, Exposes Link Between Psychiatric Drugs and Acts of Mass Violence
- Governor Newsom mobilizes state resources as California braces for winter storm
- California: Governor Newsom announces judicial appointments 12.22.2025
- Long Beach Mayor Rex Richardson Hosts State of the City Address January 13, 2026