Trending...
- "Leading From Day One: The Essential Guide for New Supervisors" Draws from 25+ Years of International Management Experience - 325
- New Slotozilla Project Explores What Happens When the World Goes Silent - 262
- Ventura College Launches County's First Speech-Language Pathology Assistant Program - 247
LOS ANGELES - Californer -- Engineers at the University of California, Los Angeles (UCLA) have unveiled a major advancement in optical computing technology that promises to enhance data processing and encryption. This innovative work, led by Professor Aydogan Ozcan and his team, showcases a reconfigurable diffractive optical network capable of executing high-dimensional permutation operations, offering a significant leap forward in telecommunications and data security applications.
Permutation operations, essential for various applications, including telecommunications and encryption, have traditionally relied on electronic hardware. However, the UCLA team's advancement uses all-optical diffractive computing to perform these operations in a multiplexed manner, significantly improving efficiency and scalability. By leveraging the intrinsic properties of light, the research introduces a novel method to execute high-dimensional permutation operations through a multiplexed diffractive optical network.
Innovative Diffractive Design
The team's design features a reconfigurable multiplexed material, structured using deep learning algorithms. Each diffractive layer in the network can rotate in four orientations: 0°, 90°, 180°, and 270°. This allows a K-layer rotatable diffractive material to perform up to 4^K independent permutation operations, making it highly versatile. The original input data can be decrypted by applying a specific inverse permutation matrix, ensuring data security.
More on The Californer
Experimental Validation and Applications
To demonstrate the practicality of this technology, the researchers approximated 256 randomly selected permutation matrices using four rotatable diffractive layers. They also showcased the design's versatility by integrating polarization degrees of freedom, further enhancing its multiplexing capabilities. The experimental validation, conducted using terahertz radiation and 3D-printed diffractive layers, closely matched the numerical results, underscoring the design's reliability and potential for real-world applications.
Future Prospects
The reconfigurable diffractive network offers mechanical reconfigurability, allowing multifunctional representation through a single fabrication process. This innovation is particularly promising for applications in optical switching and encryption, where high-speed, power-efficient information transfer and multiplexed processing are crucial.
The UCLA team's transformative work not only paves the way for advanced data processing and encryption methods but also highlights the immense potential of optical computing technologies in addressing contemporary technological challenges.
Original publication: https://doi.org/10.1002/lpor.202400238
Permutation operations, essential for various applications, including telecommunications and encryption, have traditionally relied on electronic hardware. However, the UCLA team's advancement uses all-optical diffractive computing to perform these operations in a multiplexed manner, significantly improving efficiency and scalability. By leveraging the intrinsic properties of light, the research introduces a novel method to execute high-dimensional permutation operations through a multiplexed diffractive optical network.
Innovative Diffractive Design
The team's design features a reconfigurable multiplexed material, structured using deep learning algorithms. Each diffractive layer in the network can rotate in four orientations: 0°, 90°, 180°, and 270°. This allows a K-layer rotatable diffractive material to perform up to 4^K independent permutation operations, making it highly versatile. The original input data can be decrypted by applying a specific inverse permutation matrix, ensuring data security.
More on The Californer
- ICYMI: California hotline receives 1,200 reports of hate in 2024
- Open Art Call | The Art of Artificial Intelligence | Copenhagen
- Jase has compounded Ivermectin and Mebendazole together to effectively treat parasitic infections!
- California: Californication of AI? Golden State is #1 in AI, and the birthplace of modern tech, so yeah — be quiet, Ted Cruz
- Premieres of 10th Annual NY Dog Film Festival & 8th Annual NY Cat Film Festival on Sunday, October 26, 2025 to Benefit Animal Lighthouse Rescue
Experimental Validation and Applications
To demonstrate the practicality of this technology, the researchers approximated 256 randomly selected permutation matrices using four rotatable diffractive layers. They also showcased the design's versatility by integrating polarization degrees of freedom, further enhancing its multiplexing capabilities. The experimental validation, conducted using terahertz radiation and 3D-printed diffractive layers, closely matched the numerical results, underscoring the design's reliability and potential for real-world applications.
Future Prospects
The reconfigurable diffractive network offers mechanical reconfigurability, allowing multifunctional representation through a single fabrication process. This innovation is particularly promising for applications in optical switching and encryption, where high-speed, power-efficient information transfer and multiplexed processing are crucial.
The UCLA team's transformative work not only paves the way for advanced data processing and encryption methods but also highlights the immense potential of optical computing technologies in addressing contemporary technological challenges.
Original publication: https://doi.org/10.1002/lpor.202400238
Source: ucla ita
Filed Under: Science
0 Comments
Latest on The Californer
- Assent Unveils Extended Producer Responsibility Packaging Solution to Simplify Compliance with Expanding Packaging Laws
- KatalisCoin: "Too Secure" for Bad Actors - Platform Embraces "Excessive Compliance" Criticism
- Blacksmith Raises $10M to Unblock AI Development with Fast CI for GitHub Actions
- Keyanb Exchange Implements Enhanced Security Protocols Amid Industry-Wide Trust Challenges
- TSWHZC Platform Combines Automated Portfolio Management with Proof of Reserves for Brazil Market Entry
- AureaVault Positions Digital Asset Infrastructure for Shifting Monetary Policy Environment
- JQRBT Unveils High-Speed Trading Infrastructure Designed for Growing Institutional Crypto Market
- TOM HAUSKEN: The Space Between
- California: Governor Newsom announces appointments 9.17.25
- Marketing Maven Ranked Top 10 PR Firm in Los Angeles by O'Dwyer's in 2025 Rankings Report
- California Lutheran University Receives Over $2.9 Million in Grant Funding
- Nationwide Boiler Supplies In-Stock 200K lb/hr Ultra Low NOx Boiler Package for Recovery Efforts i
- Ventura College Foundation Accepting Scholarship Applications for 2026-27 School Year
- C3.ai, Inc. (AI) Investors Who Lost Money Have Opportunity to Lead Securities Fraud Lawsuit
- California: Governor Newsom proclaims Constitution Day and Citizenship Day
- California: Governor Newsom signs legislation 9.17.25
- New Leadership and Renovations Usher in Next Chapter for Sunrise Manor
- Following Trump's politicization of CDC, West Coast states issue unified vaccine recommendations — California breaks from future federal guidance with new law
- Who Will Win the 2025 WNBA Finals? OddsTrader Shares Live Betting Odds and Projections
- Silva Construction Weighs In on the Most Popular Home Design Trends for 2026